1. (10 points) Let $P \in \mathcal{C}^{m \times m}$ be a nonzero projector. Show that $\|P\|_{2} \geq 1$, with equality if P is an orthogonal projector.
2. Let $A \in \mathcal{R}^{n \times n}$ be nonsingular. Consider designing an iterative method to solve the following linear system,

$$
A \mathbf{x}=\mathbf{b}
$$

where $\mathbf{b} \in \mathcal{R}^{n}$ is given and $\mathbf{x} \in \mathcal{R}^{n}$ is unknown.
(a) (5 points) Write down the Jacobi iterative method for the above linear system.
(b) (5 points) Write down the Gauss-Seidel iterative method for the above linear system.
3. (10 points) Let $A \in \mathcal{R}^{n \times n}$ be a symmetric, positive definite matrix. Show that solving the linear system

$$
A \mathbf{x}=\mathbf{b}
$$

is equivalent to finding the minimizer $\mathbf{x} \in \mathcal{R}^{n}$ of the quadratic form,

$$
\Phi(\mathbf{y})=\frac{1}{2} \mathbf{y}^{T} A \mathbf{y}-\mathbf{y}^{T} \mathbf{b}
$$

where $\mathbf{b} \in \mathcal{R}^{n}$ is a given vector and \mathbf{x} is unknown.
4. (10 points) Given any symmetric, positive semi-definite matrix $A \in \mathcal{R}^{n \times n}$ and any two symmetric matrices $B \in \mathcal{R}^{n \times n}$ and $C \in \mathcal{R}^{n \times n}$, show that if $C-B$ is positive semidefinite, then

$$
\operatorname{trace}(A B) \leq \operatorname{trace}(A C)
$$

5. (10 points) Let $A \in C^{2 n \times 2 n}, B \in C^{n \times n}$ and I be the $n \times n$ identity matrix. Let

$$
A=\left[\begin{array}{cc}
I & B \\
B^{H} & I
\end{array}\right]
$$

with $\|B\|_{2}<1$, where B^{H} is the hermitian conjugate of B. Show that

$$
\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{1+\|B\|_{2}}{1-\|B\|_{2}} .
$$

6. Consider the following linear system,

$$
A \mathbf{x}=\mathbf{r}
$$

where $\mathbf{r} \in \mathcal{R}^{n}$ is given, $\mathbf{x} \in \mathcal{R}^{n}$ is unknown, and

$$
A=\left[\begin{array}{cccccc}
b_{1} & c_{1} & 0 & \cdots & \cdots & 0 \\
a_{2} & b_{2} & c_{2} & 0 & \cdots & 0 \\
0 & a_{3} & b_{3} & c_{3} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\cdots & \cdots & 0 & a_{n-1} & b_{n-1} & c_{n-1} \\
\cdots & \cdots & \cdots & 0 & a_{n} & b_{n}
\end{array}\right]
$$

is assumed to be strictly diagonally dominant with $a_{1}=0$ and $c_{n}=0$:

$$
\left|b_{i}\right|>\left|a_{i}\right|+\left|c_{i}\right|, i=1,2, \cdots, n
$$

(a) (10 points) Prove that the $n \times n$ tridiagonal matrix A is nonsingular.
(b) (10 points) Let A have the LU decomposition in the form of $A=L U$, where L is an lower triangular matrix, and U is an upper triangular matrix with 1's along its main diagonal. Derive the specific forms of L and U in terms of a_{i}, b_{i} and c_{i}, where $i=1,2, \cdots, n$.
(c) (10 points) Design an $O(n)$ algorithm to solve the linear system $A \mathbf{x}=\mathbf{r}$.
7. Consider the following integration formula

$$
\begin{equation*}
u(x)=\int_{0}^{x} G(x, y) f(y) d y \quad \text { if } \quad 0 \leq x \leq 1 \tag{1}
\end{equation*}
$$

where $f \in C^{2}[0,1]$ and $G(x, y)$ is given by

$$
G(x, y)= \begin{cases}\sqrt{x^{2}-y^{2}} & \text { if } 0 \leq y \leq x \leq 1 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Partition [0,1] into n equal subintervals with mesh size $h=\frac{1}{n}: x_{j}=y_{j}=j h, f_{j}=f\left(x_{j}\right)$, $\hat{u}_{j} \approx u_{j}=u\left(x_{j}\right)$ for $0 \leq j \leq n$. We also introduce the following vector notations: $U=\left(u_{1}, u_{2}, \cdots, u_{n}\right)^{t}, F=\left(f_{1}, f_{2}, \cdots, f_{n}\right)^{t}$, and $\hat{U}=\left(\hat{u}_{1}, \cdots, \hat{u}_{n}\right)^{t}$.
(a) (10 points) To evaluate the vector \hat{U}, we may approximate the integral formula (1) by the Riemann sum based on the above uniform partition,

$$
\hat{u}_{i}=\sum_{j=1}^{i} G\left(x_{i}, y_{j}\right) f\left(y_{j}\right) h, \quad i=1, \cdots, n
$$

which will lead to a matrix-vector product $\hat{U}=\hat{G} F$ in terms of matrix \hat{G} defined by

$$
\hat{G}=\left(h G\left(x_{i}, y_{j}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq n}
$$

and the vector F. Write down this matrix-vector product to obtain the vector \hat{U} from the Riemann sum. Show that the complexity of this matrix-vector product is $O\left(n^{2}\right)$.
(b) (10 points) Based on the above uniform partition, use the structure of the Green's function G to design an $O(n)$ algorithm to compute the vector \hat{U} with accuracy $O(h)$. (Hint: split the integral into two parts: \int_{0}^{x-h} and \int_{x-h}^{x} for $x>h$.)

